Dr. Dobb's is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.


Channels ▼
RSS

Orbit Propagation


May 1991/Orbit Propagation/Listing 4

Listing 4

struct input {
  double s0[6];         // s0[6]: Pos/vel at time t0
  double tau;           // Time interval from t0 to t
  double mu;            // Mu from diff. eq. of motion
  double psi;           // Initial approx for sol. of
                    // Kepler's equation.
} ;

struct output {
  double s[6];          // s[6]: Pos/vel at time t.
};

twobdy(struct input *in, struct output *out)

// twobdy:  A function to compute the position and
//          velocity of an orbiting body under
//          two-body motion, given the position and
//          velocity at time t0, the elapsed time tau
//          at which to compute the solution, the value
//          for mu for the two bodies, and an initial
//          approximation psi of the solution to
//          the generalized Kepler's equation.
//
// References:
//   (1)  Goodyear, W.H., "A General Method for the
//        Computation of Cartesian Coordinates and
//        Partial Derivatives of the Two-Body Problem",
//        NASA Contractor Report NASA CR 522.
//   (2)  Bate, Mueller, White, Fundamentals of
//        Astrodynamics.

{

#define SQ(x) (x*x)
#define LARGENUMBER 1.e+300

// Additional variables
  int       its;                     // Iteration counter
  double a, ap;                      // Argument in series
                               // expansion.
  double alpha, sig0, u;             // Temporary quantities
  double c0, c1, c2, c3, c4, c5x 3,  // Series coefficents
        s1, s2, s3;
  double pain, psip;                 // Acceptance bounds for
                               // sol. psi to Kep. eq.
  double dtau, dtaun, dtaup;         // Residuals in Newton
                               // method for solving
                               // Kep. eq.
  double fm1, g;                     // f, g &
  double fd, gdm1;                   // fdot, gdot express.

  double mu     ,                    // Local copies of i/o
        psi ,                       // variables
        r             ,  r0 ,
        s[6], s0[6] ,
        tau;

  int loopexit;                      // Flag to exit main
                               // program loop.
  int i,j,m;

// Copy the input pos, vel, tau, psi into
//  local variables.
  for (i=0; i<6 ; i++)
    s0[i] = in->s0[i];
      mu = in->mu;
  tau = in->tau;
  psi = in->psi;

//       Compute initial orbit radius
   r0    = sqrt(SQ(s0[0]) + SQ(s0[1]) + SQ(s0[2]));

//       Compute other intermediate quantities;
   sig0  = s0[0]*s0[3] + s0[1]*s0[4] + s0[2]*s0[5];
   alpha = SQ(s0[3]) + SQ(s0[4]) + SQ(s0[5]) - 2*mu/r0;
//       Initialize series mod count m to zero
   m = 0;


//------Establish initial psi and initial acceptance bounds
//------for psi.
   if (tau == 0) {               // If input tau = 0, set
     psi = 0;                    //  output psi to 0; else
   } else {                      //  initialize acceptance
     if (tau < 0) {              //  bounds for psi, and
        psin = -LARGENUMBER;    //  initialize Newton
                psip = 0;      //  method iteration
        dtaun = psin;            //  residuals.
        dtaup = -tau;
      } else {                   //  tau > 0
        psin = 0;
        psip = LARGENUMBER;
        dtaun = -tau;
        dtaup = psip;
      }

      // If the input psi lies between bounds
      //  psin and psip, use it as a first approx.
      //  to a solution of Kepler's equation.
      // If not, we adjust the input psi before using
      //  it to solve Kepler.

      if (!( (psi > pain) && (psi < psip)) ) {
        // Try Newton's method for initial psi set equal to zero
        psi = tau/r0;
        // Set psi = tau if Newton's method fails
        if (psi <= psin || psi >= psip)
          psi = tau;
      }
    }
//------
   loopexit = 0;
   its = 0;

//----------  BEGINNING OF LOOP FOR SOLVING GENERALIZED KEP. EQ.
   do {
     its++;
     a = alpha * psi * psi;
     if (fabs(a) > 1) {
       ap = a;              // Save original value of a
       // Iterate until abs(a) <= 1.
       while (fabs(a) > 1) {
         m++;               // Keep track of number of
                         // times reduce a.
         a *= 0.25;
       }
     }
    // Now compute "C series" terms:
    // Note that they are functions of psi.
    c5x3 = (1+(1+(1+(1+(1+(1+(1+a/342)*a/272)*a/210)*a/156)
          *a/110)*a/72)*a/42)/40;
    c4   = (1+(1+(1+(1+(1+(1+(1+a/306)*a/240)*a/182)*a/132)
          *a/90)*a/56)*a/30)/24;
    c3 = (.5 + a*c5x3)/3;
    c2 = (.5 + a*c4);
    c1 = 1 + a*c3;
    c0 = 1 + a*c2;

    //   If we reduced "a" above, we have to adjust the
    //     C terms just computed.
    if (m>0) {
      while (m>0) {
        c1 = c1*c0;
        c0 = 2*c0*c0 - 1;
        m--;
       }

      c2 = (c0 - 1)/ap;

      c3 = (c1 - 1)/ap;
      c4 = (c2 - .5)/ap;
      c5x3 = (3 * c3-.5)/ap;
    }

    // Now use the C terms to compute the "S series" terms.
    s1 = c1 * psi;
    s2 = c2 * psi * psi;
    s3 = c3 * psi * psi * psi;

    g    = r0*s1 + sig0*s2;   // Compute g; used later to
                          // get position.

    // Compute dtau, the function to be zeroed by the
    // Newton method.
    dtau = (g + mu*s3) - tau;
    // r is the derivative of dtau with respect to psi.
    r    = fabs(r0*c0 + (sig0*s1 + mu*s2));

    // Check for convergence of iteration and
    //  reset bounds for psi.
     if (dtau == 0) {
       loopexit = 1;
       continue;            // Get out of loop if dtau==0.
     }
     else if (dtau < 0) {
       psin = psi;
       dtaun = dtau;
     }
     else {                 // dtau > 0
       psip = psi;
       dtaup = dtau;
     }

     // This is the Newton step:
     //  x(n+1) = x(n) - y(n)/(dy/dx).
     psi = psi - dtau/r;


     // Accept psi for further iterations if it is
     // between bounds psin and psip.
     if ( (psi > psin) && (psi < psip) ) continue;

//----  ---- ----  Begin modifications to Newton method.
     // Try incrementing bound with dtau nearest zero by
     // the ratio 4*dtau/tau.
     if (fabs(dtaun) < fabs(dtaup) )
       psi = psin * (1 - (4*dtaun)/tau);
     if (fabs(dtaup) < fabs(dtaun) )
       psi = psip * (1 - (4*dtaup)/tau);
     if ( (psi > psin) && (psi < psip) ) continue;
     // Try doubling bound closest to zero.
     if (tau > 0)
       psi = psin + psin;
              if (tau< 0)
       psi = psip + psip;
     if ( (psi > psin) && (psi < psip) ) continue;

     // Try interpolation between bounds.
     psi = psin + (psip - psin) * (-dtaun/(dtaup - dtaun));
     if ( (psi > psin) && (psi < psip) ) continue;

     // Try halving between bounds.
     psi = psin + (psip - psin) * .5;
     if ( (psi > psin) && (psi < psip) ) continue;
//---- ---- ----
     // If we still are not between bounds, we've improved
     // the estimate of psi as much as possible.
     loopexit = 1;

   } while ( loopexit == 0 && its <= 10);
//----------  END OF LOOP FOR SOLVING GENERALIZED KEPLER EQ.
   // Compute remaining three of four functions fm1, g, fd,

   // gdm1
   fm1 = -mu * s2 / r0;
   fd= -mu * s1 / ( r0 * r);
   gdm1= -mu * s2 / r;

   // Compute output solution for time t = t0 + tau
   for (i=0;i<3;i++) {
     // Position solution    at time t
     out->s[i] = s[i] = s0[i] + (fm1 * s0[i] + g * s0[i+3]);
     // Velocity solution at time t
     out->s[i+3] = s[i+3] = (fd * s0[i] + gdm1 * s0[i+3])
                                       + s0[i+3];
     // Generalized eccentric anomaly for time t
     in->psi = psi;
   }

  return(0);
}





<B>Sample Input/Output</B>


  The same pos/and vel was input for four
  different values of tau.
Input:
X     6640.32 Y  0.00    Z  0.00
XD       0.00 YD 7.03    ZD 4.06

tau        = 1576.78 sec = 1/4 orbit period

Output:
X  -1470.76 Y  6326.18 Z  3652.42
XD    -7.24 YD   -0.62 ZD   -0.35

tau       = 3153.56 sec  = 1/2 orbit period

Output:

X  -8115.95 Y     0.00 Z     0.00
XD      0.00 YD  -5.75 ZD   -3.32

tau      = 4730.34 sec = 3/4 orbit period

Output:
X  -1470.77 Y -6326.17 Z -3652.42
XD  7.24    YD -0.62 ZD   -0.35

tau    = 6307.12 = orbit period

Output:
X   6640.32 Y     0.00 Z     0.00
XD     0.00 YD    7.03 ZD    4.06

At the end of one period, the original state repeats,
as expected.


Related Reading


More Insights






Currently we allow the following HTML tags in comments:

Single tags

These tags can be used alone and don't need an ending tag.

<br> Defines a single line break

<hr> Defines a horizontal line

Matching tags

These require an ending tag - e.g. <i>italic text</i>

<a> Defines an anchor

<b> Defines bold text

<big> Defines big text

<blockquote> Defines a long quotation

<caption> Defines a table caption

<cite> Defines a citation

<code> Defines computer code text

<em> Defines emphasized text

<fieldset> Defines a border around elements in a form

<h1> This is heading 1

<h2> This is heading 2

<h3> This is heading 3

<h4> This is heading 4

<h5> This is heading 5

<h6> This is heading 6

<i> Defines italic text

<p> Defines a paragraph

<pre> Defines preformatted text

<q> Defines a short quotation

<samp> Defines sample computer code text

<small> Defines small text

<span> Defines a section in a document

<s> Defines strikethrough text

<strike> Defines strikethrough text

<strong> Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<u> Defines underlined text

Dr. Dobb's encourages readers to engage in spirited, healthy debate, including taking us to task. However, Dr. Dobb's moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing or spam. Dr. Dobb's further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | View the list of supported HTML tags you can use to style comments. | Please read our commenting policy.