Dr. Dobb's is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.


Channels ▼
RSS

C/C++

Memory Leaks Detection: A Different Approach


Michael is a software engineer for HP IT Management Software and can be contacted at [email protected].


Experienced C/C++ programmers know about the need to properly manage dynamically allocated memory to avoid memory leaks. Unfortunately, many of us still find ourselves in a tough position when there is a memory leak in the software. How is it detected in the first place? Simply looking at the task manager (or other appropriate tool that shows memory-use statistics) indicates that the memory used by the process is constantly growing. That means that the memory use is expected to remain constant. But the program must allocate memory, at least at the beginning of its life. Therefore, a more precise description would be that the process is running for a while, the input rate is constant, and the memory continues to climb. The interpretation of the input rate depends on the purpose of the program; for a web server, for instance, it can be network traffic throughput, or the number of requests per second.

How do you attack this problem? Assume that your first attempts at just looking at the code failed, and you need to get help from an automatic memory-leak detection tool. While your favorite tool may use unique techniques to trace memory allocation/deallocation and different algorithms to organize that information at runtime, it most probably works like this:

  1. From the moment the program starts, it traces each memory allocation (probably with additional information, such as a call stack).
  2. It registers all released memory.
  3. Before the program terminates, it prints out information about each unreleased memory block.

Related Reading


More Insights






Currently we allow the following HTML tags in comments:

Single tags

These tags can be used alone and don't need an ending tag.

<br> Defines a single line break

<hr> Defines a horizontal line

Matching tags

These require an ending tag - e.g. <i>italic text</i>

<a> Defines an anchor

<b> Defines bold text

<big> Defines big text

<blockquote> Defines a long quotation

<caption> Defines a table caption

<cite> Defines a citation

<code> Defines computer code text

<em> Defines emphasized text

<fieldset> Defines a border around elements in a form

<h1> This is heading 1

<h2> This is heading 2

<h3> This is heading 3

<h4> This is heading 4

<h5> This is heading 5

<h6> This is heading 6

<i> Defines italic text

<p> Defines a paragraph

<pre> Defines preformatted text

<q> Defines a short quotation

<samp> Defines sample computer code text

<small> Defines small text

<span> Defines a section in a document

<s> Defines strikethrough text

<strike> Defines strikethrough text

<strong> Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<u> Defines underlined text

Dr. Dobb's encourages readers to engage in spirited, healthy debate, including taking us to task. However, Dr. Dobb's moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing or spam. Dr. Dobb's further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | View the list of supported HTML tags you can use to style comments. | Please read our commenting policy.